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Abstract: In online aggregation, a database system processes a user‘s aggregation query in an online fashion. During 

the query processing, the system gives the user an estimate of the final query result, with the confidence bounds that 

become tighter over time.Map-Reduce programming approach have close relationship with cloud computing. Today, 

online aggregation is a very attractive technology. In this I have described how online aggregation can be built into a 

Map-Reduce system for large-scale data processing. In this I also describes the detail implementation of OLA models 

in Hayracks . In literature survey section we have briefly discussed various online aggregation methodology such as 

OATS,COLA , Parallel Online Aggregation with their advantages and limitations. Lastly, I have presented advantages 

and limitation of OLA. Online Aggregation is an attractive sampling-based technology to response aggregation queries 

by an estimate to the final result, with the confidence interval becoming tighter over time. It has been built into a Map-

Reduce-based cloud system for big data analytics, which allows users to monitor the query progress, and save money 

by killing the computation early once sufficient accuracy has been obtained. However, there are several limitations that 

restrict the performance of online aggregation generated from the gap between the current mechanism of Map-Reduce 

paradigm and the requirements of online aggregation, such as: 1) The low sampling efficiency due to the lack of 

consideration of skewed data distribution for online aggregation in Map-Reduce.  

2) The large redundant I/O cost of online aggregation caused by the independent job execution mechanism of Map-

Reduce.  
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I. INTRODUCTION 

When we are running online aggregation (OLA)[1] during 

query processing, a database system gives a user a 

statistically valid estimate for the final answer to an 

aggregate query, along with confidence bounds. The 

confidence bound is calculated in the following form: 

―with probability p, the actual query answer is within the 

range low to high‖. As the computation progresses, the 

bounds goes narrow, until the bounds are zero width, that 

indicate the complete accuracy. The main benefit of using 

OLA is that if an acceptably accurate answer can be 

arrived at very quickly (may be, tiny fraction of the time 

needed  to run the entire query), the query can be aborted, 

and in this way it is possible to save   computer and human 

time. 

In this work, Map-Reduce was originally designed as a 

batch oriented system.Generally,it is  used for interactive 

data analysis where  a user submits a job to extract 

information from a data   set, and then waits to view the 

results before proceeding  with the next step in the data 

analysis process. This trend has accelerated with the 

development of high-level query  languages such as Hive , 

Pig and Sawzall that are executed as Map-

Reducejobs.Traditional Map-Reduce  implementations  

provide a   poor interface for interactive data analysis, 

because they  do not produce any output until the job has 

been executed   to completion. In many cases, user need  a 

―quick and dirty‖ approximation over a correct answer that 

takes much longer to compute.  In order to get the 

intermediate result, online aggregation has been  used, but 

the batch-oriented nature of traditional Map-Reduce  

 

implementations makes these  task  difficult to apply .Now 

day, Online Aggregation  has a good  scientific impact, but  

its commercial impact has been limited or even  non –

existent because of the following   two main reasons: 

1.During the  implemention of  OLA within a database 

engine we  require to do the  extensive changes to the 

database kernel. OLA  requires some sort of statistically 

quantifiable randomness  within the database engine. 

Most  of the OLA algorithms that has been used,  

require  the blocks (or tuples) in a relation be processed 

using  a ―random‖ ordering. For random ordering we 

need to do significant changes to most kernels. 

2.Some query finish its execution within a fraction and 

returns the result to the user, even if  the user is 

relatively happy with the results. Ending the query  early 

might save some CPU cycles or disk bandwidth that  

can then be used by others, but the user who killed the 

query  early may not benefit directly. Furthermore, the 

database  hardware/software/maintenance costs in a self-

managed system are not elastic, and do not decrease 

appreciably if many  users decide to stop their queries 

early. 
 

II. LITERATURE SURVEY 

1. Online Aggregation in the cloud (OLA Cloud)  

In OLA Cloud implementation[3] ,I have used  Hadoop 

Online Prototype (HOP)  as a natural candidate for the 

underlying query processing engine. HOP is a modified 

version of the original Map-Reduce framework, which is 

designed  to construct a pipeline  between Map and 
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Reduce so that the reduce task could  start  immediately as 

long as any Map output is generated. Such pipeline 

property can help to support OLA  by returning the early 

approximate result of the query,  and scaling up such result 

with the query progress.In this section,I  have described 

the data flow of OLA Cloud, which consists of two steps: 

A. Content-aware   repartition with fair-allocation strategy. 

B. OLA  query processing with shared sampling. 
 

A. Content-Aware Repartition With Fair-Allocation 

Strategy : The first step it is nothing but a pre-processing 

of OLA Cloud, which is implemented by using  two 

functional components:content-aware repartition and  fair 

allocation.This is motivated by the observation that  the 

performance of online aggregation is actually determined 

by the data distribution rather than data  size . Given an 

input file has already been loaded  into the HDFS (Hadoop 

Distributed File System), the task of such pre-processing is 

to reorganize the original file in the granularity of blocks 

according to the attributes. For the content-aware partition, 

author  proposed a block placement strategy called fair-

allocation, which replaces the default random strategy, to 

guarantee the storage and computation load balancing for 

our  content-aware repartition method. 

 
Fig.1.Content-Aware Repartition With Fair-Allocation 

Strategy. 
 

B. OLA Query Processing With Shared Sampling 

This step is implemented   by the component called shared 

sampling.which provide support to the  essential 

procedures of OLA such as sample collection, statistic 

computation and accuracy estimation.The multiple queries 

are decomposed into a series of map  tasks initially. And 

we can reuse the samples retrieved by one task to evaluate 

a number of queries rather than each query retrieves its 

own samples if there has potential dependency among 

these map tasks. Above figure shows that OLA Cloud 

collects a batch of query jobs and analyzes the sharing 

opportunities among the queries in the granularity of task 

and groups the shared tasks together to form a new 

grouped map task, in which  the samples collected are 

reused for accuracy estimation of each involved query.The 

reduce phase estimates the approximate results for the 

query jobs once the reducer receives a sufficient map 

output (a pipeline  model). If the accuracy obtained is 

unsatisfactory, the above reduce process is repeated by 

taking the latest map output which is aggregated with the 

previous approximate results to make a new estimate for 

higher accuracy. The final result is returned when desired 

accuracy is reached and the users can stop the query early 

before its completion. 

 
Fig .2. OLA  Query Processing With Shared Sampling. 

 

2. Hadoop Implementation To Support OLA Within A 

Single Job & Between Multiple Jobs: 
 

A. Single-Job Online Aggregation: 

In HOP[4], the data records produced by map tasks are 

sent to reduce tasks shortly after each record is generated. 

However, to produce the final output of the job, the reduce 

function cannot be invoked until the entire output of every 

map task has been produced. Here, it is possible to support 

online aggregation by simply applying the reduce function 

to the data that a reduce task has received so far.The 

output generated of such an intermediate reduce operation 

is  called snapshot. Users would like to know how accurate 

a snapshot is: that is, how closely a snapshot resembles the 

final output of the job. Accuracy estimation is a hard 

problem even for simple SQL queries and particularly 

hard for jobs where the map and reduce functions are  

user-defined code. 
 

B. Multi-Job Online Aggregation: 

Online aggregation is particularly useful when it is  

applied to a long-running analysis task consist of multiple  

Map-Reduce jobs.This  version of Hadoop allows the 

output of a reduce task to be sent  directly to map tasks. 

This feature can be used to support  online aggregation for 

a sequence of jobs.  Suppose that job1 and job2 are two 

Map-Reduce jobs, and consider  job2  consumes the output 

of job1. When job1‘s reducers compute a snapshot to 

perform online aggregation, that snapshot is written to 

HDFS, and also it is sent directly to the map tasks of  job2 

. The map and reduce steps for job2 are then computed as  

normal, to produce a snapshot of job2‘s output. This 

process can then be continued to support online 

aggregation for  an arbitrarily long sequence of jobs. 
 

3. COLA: A Cloud-Based System for Online 

Aggregation 

COLA [7] provides an online aggregation executions 

engine  with sampling techniques that  support incremental 

and continuous computing aggregation and minimize the 

waiting time before an acceptable estimate is 

available.User friendly SQL queries are  also supported in 

COLA.COLA can convert non OLA  jobs into online 

version so that user do not have to write any special 

purpose code to make estimate. 
 

C. COLA System  Architecture And Implementation 

In below  Fig 5 shows the  System architecture of COLA. 

In COLA there are  four modules: User Interface, Query 

Engine, Online Aggregation Executor and Data 

Manager.Users can submit queries through SQL or 

command-line interface and monitor running estimates via 
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the User Interface. The Query engine serves as a translator 

that transforms SQL queries into Map-Reduce jobs and 

converts non-OLA jobs to online mode. The Online 

Aggregation Executor fetches uniform-random samples 

from the Data Manager continuously, processes the 

samples through Map-Reduce jobs in online fashion and 

reports the estimates back to the client. 

 
Fig.3. System architecture of COLA. 

 

1. User Interface: 

COLA provides interactive and flexible interfaces, users 

can issue SQL query request through SQL interface or 

submit Map-Reduce program via shell interface.In 

addition, the graphical user interface it can also observe 

the query progress and online estimates with associated 

confidence intervals during the query processing. 
 

2. Query Engine: 

The Query Engine is responsible for compiling the SQL 

query into directed acyclic graph of Map-Reduce jobs, and 

translating the non-OLA jobs to online version. Hence 

users can submit batch-oriented Map-Reduce programs 

and do not need to have the knowledge of the estimate 

computation. 
 

3. Online Aggregation Executor: 

The Online Aggregation Executor is the key module of 

COLA to perform online query processing algorithm over 

Map-Reduce. It is called to process the sample data,and  it  

produces an approximate answers with their associated 

confidence intervals. It also used to  refine the answers. In 

addition, the module makes predictions about the residual 

completion time,and also estimates amount saved so far. 
 

4. Data Manager: 

The Data Manager makes use of HDFS to store and 

manage data. It mainly stores the  metadata such as 

mappings between tables and HDFS directories in 

Metadata Manager, that can be used to do query 

optimization and compilation in SQL2MR Translator.  
 

Advantages of COLA: 

COLA  provide progressive approximate aggregate 

answers for both single table and multiple joined 

tables.COLA can produce acceptable approximate answers 

within two orders magnitude shorter time compared to 

getting the accurate results, which makes it possible to 

save huge  amount of computing cost from the pay-as-you-

go cost model in the context of cloud computing. 

Advantages of OLA : 

1. OLA  makes the original platform much more flexible 

by providing a fast and effective   way to obtain 

approximate results within the prescribed level of 

accuracy rather than  the accurate results. This can 

significantly improve the analytic performance against 

the large volumes of data. 

2. OLA reduces the economic cost of users on the 

typically pay-as-you-go cloud systems, that is an user 

can save money by monitoring the estimated result and 

killing the  computation early once the user gets  

sufficient accuracy . 

3. OLA also increases the overall throughput of the cloud 

system since the released resources of early terminated 

OLA queries can be delivered to the other running OLA 

queries immediately, which helps to increase the 

parallelism degree and resource utilization. 

 

Limitation of OLA: 

1)Sampling efficiency is low due to the lack of 

consideration of skewed data distribution for online 

aggregation in Map-Reduce. 

2) It increases the I/O cost of online aggregation due to  

the independent job  execution mechanism of Map-

Reduce. 

 

III. IMPLEMENTATION 

In this I have describe our implementation of the OLA 

model in Hyracks . Hyracks is a new open source project 

that supports map and reduce operations, along with 

higher level relational operations such as filter (selection), 

projection, and join.The Hyracks architecture is similar to 

Hadoop—it has a single master node for submitting jobs 

(queries) and housing the task scheduler, which executes 

tasks on worker nodes running in the cluster.Hyracks tasks 

support read and write operations in HDFS , which we 

leverage to store the input to the map tasks and the output 

of the reduce tasks. Like Hadoop, when a client submits a 

Map-Reduce job, Hyracks assigns a single map task to a 

given block in the input data, and creates a configurable 

number of reduce tasks that are assigned specific groups 

using some partitioning function. 
 

In this modified the Hyracks implementation in two ways. 

First, created a single queue containing the blocks in the 

input data.The order of the blocks in the queue is 

uniformly shuffled using the java.util.Collections.shuffle 

routine from the Java Standard Library.When Hyracks 

schedules a map task, it assigns the current block at the 

head of the queue. The map task‘s execution time includes 

the time to obtain its assigned block from HDFS, the 

execution of the map function on each input record, and 

the execution of the combiner on the complete map 

function output. In this work we ignore performance issues 

involving locality; although we do account for block 

locality in our model. In future work, we plan on 

investigating locality scheduling techniques reminiscent to 

Delay Scheduling. Our second modification involves 

running the estimator in the reduce task during the shuffle 

phase. In the shuffle phase, the reduce task is continuously 

receiving the output of completed map tasks. The output 

of a map task includes a data file containing the groups 

assigned to the reduce task and a meta-data file containing  
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timing and locality information.If the map output contains 

no groups for a given reduce task then an empty data file 

is given along with a complete meta-data file.The meta-

data file contains the block identifier, the time it took to 

schedule the block and the block locality relative to the 

map task execution: machine-local, rack-local, or distant. 

Also included is the map task IP address, start time and 

end time.  
 

3.1 System Architecture: 

Hadoop is composed of Hadoop Map-Reduce, an 

implementation of Map-Reduce designed for large 

clusters,and the Hadoop Distributed File System (HDFS), 

a file system optimized for batch-oriented workloads such 

as Map-Reduce. In most Hadoop jobs, HDFS is used to 

store both the input to the map step and the output of the 

reduce step. Note that HDFS is not used to store 

intermediate results (e.g. the output of the map step): these 

are kept on each node‘s local file system.A Hadoop 

installation consists of a single master node and many 

worker nodes. The master, called the Job-Tracker, is 

responsible for accepting jobs from clients,dividing those 

jobs into tasks, and assigning those tasks to be executed by 

worker nodes.  
 

Data will be collected from online sources, data will be in 

the form of numeric and alpha numeric form based on the 

type of input dataset selected by us.Once data is collected 

we would create a Hadoop Mapping class to map data into 

our respective format as needed by us for processing.After 

data mapping we would create a Hadoop Reduce class to 

reduce the given data into Aggregated form.Algorithms as 

mentioned in the paper would be used to Reduce the data 

into Aggregated form (check the following 

examples) .Once aggregated data is found, we use it for 

result evaluation and comparison purposes. 

 
Fig.4. Architecture Online Aggregation of Map-Reduce 

 

 
 

Fig. 5. Architecture of the Proposed System. 

 

3.2 Proposed System Algorithm: 

In this,I have[1] consider how estimates and confidence 

bounds for those estimates can be obtained. As intimated 

previously, this is a challenging problem, as we must take 

into account processing times as well as observed 

aggregate values in order to circumvent the inspection 

paradox. 
 

1.  Overview: 

I will apply a Bayesian approach for estimation [13]; for 

brevity,this section will assume that the reader has some 

very basic familiarity with Bayesian statistics. The 

Bayesian approach has several obvious benefits for this 

particular problem. Most significant is the fact that the 

inspection paradox ―goes away‖ under the Bayesian 

approach if one takes into account the time spent waiting 

for each block to be processed as observed data. 
 

In standard Bayesian fashion, I will first describe a 

stochastic, parametric process that we imagine was used to 

produce the―observed‖ as well as the ―hidden‖ data. The 

―observed data‖ will collectively be referred using variable 

X. This set includes all of the known aggregate values and 

processing times. Our generative process will also produce 

a set of unobserved variables collectively referred to as Ө. 

Ө includes any data that is unobserved (for example, the 

processing time for a block that has not yet finished)—this 

data is collectively referred to as Y—as well as any 

unknown parameters required by the generative process 

(for example, the mean aggregate value per block). In 

Bayesian fashion, we will then attempt to infer the 

distribution P(Ө |X), which is referred to as a posterior 

distribution for Ө. Then, given X as well as P(Ө |X), it is 

possible to obtain a posterior distribution over the actual 

query result, which can be used to obtain confidence 

bounds that are reported to the user. 
 

Note that the discussion in this is directly applicable only 

to SUM and COUNT queries, which are both evaluated by 

simply summing xi values (in the SUM case, xi will 

contain the total aggregate value for the block, and in the 

COUNT case, xi will contain the tuple count for the 

block). Extensions to other aggregates such as AVG, 

VARIANCE and STD DEV are straightforward; in 

general they require that we maintain zero, first and 

second moments for each block. 
 

2.  Generative process: 

To obtain the data that I must analyze to produce estimates 

and confidence bounds, we imagine that the following 

stepsare repeated, once for each of the n blocks in the 

system: 

   Z      Normal (μ, Σ) 

2. (X  ,Y )    o   ro     ( Z  ,   ) 

 

 ―      ‖ should be read as ―is sampled from‖. After this 

process has been repeated n times (once for each block)—

our goal is then to infer the posterior distribution for Ө 

using X. This process requires some additional 

explanation. We begin by describing the vector Zᵢ. If there 

are m machines being used to execute a query, we imagine 

that associated with the ith block is a vector Zᵢ with 3m + 2 
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entries, which contains both observed and hidden data. Zᵢ 

takes the form: 

 
 

3. Prior Distributions 

To make our model fully Bayesian , I must supply priors 

on   and  . In our implementation, each  k ,     

InvGamma(1, 1) (where k refers to the kth dimension in 

Zᵢ). The inverse Gamma distribution is a standard, 

uninformative prior for values that must be non-

negative—it makes sense to have non-negative means for 

all of the time values in the Zᵢ vector. It will also usually 

make sense to have a non-negative mean for xᵢ; if not, then 

another suitable, uninformative prior can be used.Handling 

the covariance matrix   is a bit trickier. The standard prior 

distribution for a covariance matrix is the inverse Wishart 

distribution, because it is ―conjugate‖ for the normal. This 

means that under certain conditions, upon observing the 

output from a normal distribution with an inverse Wishart 

prior on the covariance, th posterior on the covariance is 

still inverse Wishart. Conjugacy is convenient because it 

can make inference much easier. Unfortunately, these 

―certain conditions‖ are not met in our application because 

I do not always have actual observations from the 

normal—we may only know, for example, that the 

processing time has a lower bound (if I am in ―case three‖ 

from the previous subsection). 
 

Thus,I choose to use an application-specific prior that is 

easily factorable; that is, where we can easily write the 

marginal distribution for each entry in the covariance 

matrix. This makes deriving a Gibbs sampler for inference 

much easier (see the next subsection).  

Specifically, we let   InvGamma(1, 1), where 

 Then, we assume that the following 

process is used to generate the rest of  : 

 
 

Here, GenBeta(−1, 1, 1, 1) refers to a generalized Beta(1, 

1) distribution, stretched to cover the range from −1 to 1 

(rather than the usual 0 to 1). What this process does is to 

essentially sample a correlation ρ for each of the pairs of 

variables in Zᵢ, and to then check whether a valid 

covariance matrix has been obtained (one that is positive 

definite). If it has not, then the whole process is repeated 

again.The PDF for   can then be written as: 
 

 

4. Posterior Distribution 

In this subsection, we tackle the problem of obtaining a 

formula for the desired posterior distribution, P(Ө|X). 

Recall that X =Uᵢ{Xᵢ}, and the unobservable data set Ө 

contains Y =Uᵢ{Yᵢ},as well as the normal parameters   

and  . 

From elementary probability, we know that: 

 
This means that there are three quantities that we must 

derive expressions for: P(X| Ө), P(Ө), and P(X). 

We deal with P(X| Ө) first. From the generative process, 

we know that P(X| Ө) =ПᵢP(Xᵢ| Ө). We can easily write an 

expression for each P(Xᵢ| Ө). 
 

5. Putting It All Together 

Since our goal is to produce estimates and confidence 

bounds for the actual query result, we are not interested in 

the posterior distribution P(Ө |X) for its own sake. Rather, 

we will use P(Ө |X) to produce estimates and confidence 

bounds for the answer.To describe how this is done, note 

that given a possible value for Ө —combined with the 

visible data X—we have access to each and every xᵢ value 

in the database. Thus, given a particular Ө as well as X it 

is very easy to compute the query answer as: 

 
Then by integrating P(Ө |X) over all possible Ө, we obtain 

various statistics describing the eventual query result. For 

example, the following gives us the expected value of the 

query result: 

 
And I can obtain the lower end l for a Max % of 

confidence bound on the query result by computing Ʌ  and 

l so that: 

 
 

The upper end could be computed in a similar 

fashion.Unfortunately, performing this sort of computation 

exactly is difficult.The difficulty is often circumvented 

using so-called ―Markov Chain Monte Carlo‖ (MCMC) 

methods [15] that sample directly from a distribution such 

as P(X| Ө). In our case, we apply a particular MCMC 

method called a Gibbs sampler to the problem [4].The 

samples obtained from a Gibbs sampler are easily used to 

compute expected value and confidence bounds. 

 
IV. EXPECTED RESULTS 

In the Online Aggregation I will be used three basic 

process onto the Input data (Which is as per the base 

paper) these process are as a.Generative Process, b.Prior 

Distribution & c.Posterior Distribution. After performing 

these processes Putting all the process together and 

generates the expected Ouputs. 

 And finally I am getting the expected aggregated output. 

Due to this I will be used in Online fashion of the data 

(Output) Aggregation. 
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Fig. 6. File Selection 

 

 
Fig. 7. Expected Aggregated Output. 

 

V. CONCLUSION & FUTURE WORK 

Like the earlier works on Online Aggregation,I focus on 

single table query plans involving ―Group By‖ 

aggregations, which is precisely the workload targeted by 

Map-Reduce. The focus of our work here is to develop a 

model that accounts for biases that can arise when 

estimating aggregates in a cluster environment. This 

model allows us to export ―early returns‖of query 

aggregates that are statistically robust. Cloud-based data 

management systems are emerging as scalable, fault-

tolerant, and efficient solutions that manages large 

volumes of data with cost effective infrastructures.It is an 

attractive solution to provide a quick sketch of massive 

data before a long wait of the final accurate query result. 

The main benefit of OLA  is that if we get an acceptably 

accurate answer within a fraction of  time , then we can  

abort the query execution thus, saving significant 

computer and human time. 
 

Locality scheduling in the context of online aggregation is 

a major issue that needs to handle in future. Scheduling 

computation near the data is the primary optimization in 

today‘s Map-Reduce Systems. Further, we would also like 

to consider external constraints on the scheduler. For 

example, we may wish to schedule only those tasks from 

the highest priority jobs. 
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